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1 SUMMARY

The goal of this project is the development of sophisticated road map extraction and fusion

algorithms which use the ground target radar tracks as building blocks. We develop inno-

vative frameworks, methodologies and algorithms that intelligently fuse tracks of different

targets which move along the same road over time, to obtain accurate and refined estimate

of the road map.

In this project, modeling the roads as piecewise linear segments, an appropriate data

structure is developed to represent the road network map. An maximum likelihood (ML)

road estimator using radar tracks, as well as its corresponding Cramér-Rao lower bound

(CRLB), is derived. To properly fuse target tracks with the road network, a track to road

correlation/association approach is proposed to align track segments to existing road seg-

ments. To enhance the association performance, statistics and information extracted from

the track estimate, including both position and velocity estimates, are used in the track to

road association approach. If the track has overlap with any existing road segments, a track

to road fusion algorithm is proposed to fuse the track with the associated road segments

to improve the road map accuracy; otherwise, a new road is added to the road network

based on the target track. This process is repeated till all the available radar tracks are

integrated/fused with the radar map. In this project, we derive theoretical results for road

estimation based on radar tracks, track to road association, road to road association, and

road fusion. Numerical results are provided to demonstrate the effectiveness of the proposed

road estimation and fusion approaches.

2 INTRODUCTION

In this project, we seek to extract road maps based on ground vehicle tracks which are es-

timated using radar measurements, such as those obtained from the ground moving target

indicator (GMTI). Accurate and up-to-date roadmaps are crucial for many purposes such

as navigation, target tracking [1, 2], and airborne knowledge-aided space-time adaptive pro-

cessing (STAP) [3, 4]. Digital road maps produced by the National Imagery and Mapping

Agency (NIMA) as well as the United States Geological Survey (USGS), the two most com-

mon sources of such maps, often have errors that are large compared to the resolution of

the GMTI sensors [5]. Road maps may be manually extracted from aerial photographs or

synthetic aperture radar (SAR) images, but this process is extremely slow and laborious.

Automatic transformation of images into digital road maps is possible, but is a difficult task

and prone to errors, such as the false roads caused by boundaries in the image. As a result,

radar track-driven road map extraction is an important and challenging problem in scenarios

where road maps are not available, or where they are not sufficiently accurate or up-to-date.

1
Approved for Public Release; Distribution Unlimited.



2.1 Literature Review

2.1.1 Road Map Extraction from GMTI Data

A literature search has been conducted for road map conflation using radar data. There are

a few publications on the topic of road map extraction based on GMTI data. In [5], O’Neil

modeled the road itself as a trajectory through space, which is indexed by arc-length instead

of by time. An iterative procedure to estimate the road using GMTI data was proposed,

which starts with the initial knowledge of the road trajectory estimate provided by target

tracking algorithms.

Koch et al. [6] applied track smoothing techniques to improve the target trajectory es-

timates, which are used to build the road map. The road map information was further

employed to assist tracking of targets that move along the roads.

In [7], Sklarz et al. deemed track and the road as composite curve entities rather than

sequences of points, which were associated and fused as a whole. In [7], by using dynamical

time warping (DTW), similarity measures are proposed to measure the distance between two

curves, which facilitate the track to road association process. The track to road fusion prob-

lem was cast as a curve fusion problem and a preliminary curve to curve fusion approach was

developed by simply fusing matched points and ignoring the unknown correlation between

the road estimation error and the track estimation error.

2.1.2 Road Map Extraction from Images

Some recently published papers are related to the road network conflation problem using

image data [8,9]. In [8], the authors proposed to extract road intersections and terminations

from imagery based on spatial contextual measures. The extracted intersections were used

as control points for conflation algorithm. In [9], an EKF has been combined with a special

particle filter to regain the trace of the road beyond obstacles, as well as to find and follow

different road branches after reaching to a road junction.

2.2 Background in Track to Road Association

Track to road association is a very crucial step in the road map generation. Here we first study

the hypothesis testing problem to determine whether the target state estimate at a particular

time belongs to an exiting road segment or not. Below, we present three approaches based

on the normalized distance (Mahalanobis distance), likelihood with diffuse prior, and the

generalized likelihood and discuss the relationship between the first two.

2.2.1 Traditional Track-to-Track Association

A straightforward way for track-to-road association (correlation) is to utilize the position

estimates contained in the target tracks. More specifically, similar to the track to track

association approach in [10], we propose the following hypothesis test to decide whether

2
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a target at a certain time is on the existing roads or not. First, let xk denote the target

position estimate at time k with a covariance matrix Pk, and xl denote the position estimate

of an arbitrary point on the existing roads in the road map with a covariance matrix Pl.

For simplicity, we assume that xk and xl are jointly Gaussian with cross-covariance matrices

Pkl = PT
lk. We define the difference between these two position estimates as

∆kl = xk − xl (1)

If both xk and xl are unbiased estimates and they correspond to the same location, then

∆kl follows a Gaussian distribution with zero mean and covariance matrix Pk+Pl−Pkl−Plk.

The point in the target track at time k can be associated to the existing roads by testing

the following statistic:

d1 = min
l

[

∆T
kl (Pk +Pl −Pkl −Plk)

−1 ∆kl

]

(2)

Note that the search space of the above optimization problem can be significantly reduced, if

a gating procedure is used to prune the existing road points which are clearly not associated

with xk.

If xk belongs to an exiting road, d1 follows a Chi-square distribution with nx degrees of

freedom, where nx is the dimension of the target position vector, which is three when the

road is represented in a three-dimensional space. For a pre-specified probability of type I

error α , the test threshold can be obtained as

Tα = F−1
χ2
nx

(1− α) (3)

where F−1
χ2
3
is the inverse of the cumulative distribution function of a Chi-square distributed

random variable with nx degrees of freedom. When d1 < Tα, we can decide that the point

belongs to the existing roads.

2.2.2 Likelihood with Diffuse Prior

In [11], under the assumption that the prior of the true target state x is a Gaussian distri-

bution with an arbitrary mean µ and scaled covariance σ2P, Kaplan et al. showed that as

σ2 → ∞, the likelihood of two tracks, xk and xl, corresponding to the same target state x,

becomes

L(xk,xl) =
1

|2π (Pk +Pl −Pkl −Plk)|
1
2

exp

[

−
1

2
∆T

kl (Pk +Pl −Pkl −Plk)
−1 ∆kl

]

(4)

Therefore, a proper test statistic is obtained in a straightforward manner as follows

d2 = min
l

[

log |2π (Pk +Pl −Pkl −Plk)|+∆T
kl (Pk +Pl −Pkl −Plk)

−1 ∆kl

]

(5)

Comparing d2 in (5) with d1 in (2), it is clear that they are almost the same, except that

in d2, an extra penalty term has been introduced to favor those associations resulting smaller

covariance matrix (Pk +Pl −Pkl −Plk).

3
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2.2.3 Generalized Likelihood

If the target state estimate can be treated as a deterministic vector, one can use the gener-

alized likelihood approach [11]. Given the target state x is known, the likelihood of xk and

xl is

L(xk,xl|x) =
1

|2πΣ|
1
2

exp

[

−
1

2
(x2 − I2x)

T Σ−1 (x2 − I2x)

]

(6)

where x2 = [xT
k xT

l ]
T , I2 = [Inx×nx

Inx×nx
]T and

Σ =

[

Pk Pkl

Plk Pl

]

Since x is unknown, in a generalized likelihood, it is replaced by its ML estimate based

on xk and xl, which is the fused state estimate xf . It is well known that the fused state xf

is

xf = Pf IT2Σ
−1x2 (7)

where

Pf =
(

IT2Σ
−1I2

)

−1
(8)

Therefore, the GL is given as follows

L(xk,xl|x) =
1

|2πΣ|
1
2

exp

[

−
1

2
(x2 − I2xf )

T Σ−1 (x2 − I2xf )

]

=
1

|2πΣ|
1
2

exp

[

−
1

2

(

xT
2Σ

−1x2 − xT
f P

−1
f xf

)

]

(9)

As a result, the test statistic based on the GL is

d3 = min
l

[

log |2πΣ|+
(

xT
2Σ

−1x2 − xT
f P

−1
f xf

)]

(10)

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Conversion between Different Coordinate Systems and Dataset Visualiza-

tion

Matlab codes are developed for the conversion from geographic coordinates to topocentric

coordinates, and for the display of the road map information.

In order to process the synthetic dataset, it is required to transform the coordinates of

a target from the geographic coordinate system to the topocentric coordinate system. The

earth is assumed to be an ellipsoid, and the geographic coordinates consist of latitude φ,

longitude λ, and the ellipsoid height h of the target. A topocentric coordinate system is a

3-D Cartesian system having mutually perpendicular axes U , V , W with an origin on or

4
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near the surface of the Earth. The U-axis is locally east, the V-axis is locally north and the

W-axis is up forming a right-handed coordinate system.

For a given topocentric origin with the geographic coordinates φ0, λ0, and h0, the conver-

sion of a target’s geographic coordinates (φ, λ, h) to its topocentric coordinates (U, V, W ),

or the reverse formula to convert topocentric coordinates (U, V, W ) into latitude, longitude

and ellipsoidal height (φ, λ, h), has been discussed in details in [12].

Based on the formulas described in [12], Matlab codes for the conversion from geographic

coordinates to topocentric coordinates have been developed. Specifically, the earth is as-

sumed to be an ellipsoid with the equatorial radius of 6378137.0 meters, and the polar

radius of 6356752.314 meters. The Salt Flats of Utah are assumed to be 1286 meters above

the sea level. The topocentric origin is taken as the center of the 10km × 10km area, with

its latitude φ0 = 40.7 degrees, longitude λ0 = −113.875 degrees, and the ellipsoid height

h0 = 1286 meters.

The truth data in SyntheticData.mat include the road segments, which are indicated by

the geographic coordinates (latitude and longitude) of the starting and end way points. The

Matlab program takes the truth data, converts the data to the topocentric coordinate system,

and plots the road network in the topocentric coordinate system. In addition, the program

also converts the track data from geographic coordinate system to topocentric coordinate

system. In Figure 1, the map network and the first 5 target tracks in SyntheticData.mat

have been plotted. It is clear that the tracks are very close to the corresponding roads, but

they do not coincide with each other, due to estimation errors in the track data.

3.2 Road Conflation Based on Radar Positional Data

In this section, an efficient mathematical representation of the road is proposed, the likelihood

function of the track data conditioned on the road parameters is derived, and solutions to

road estimation based on track data, track to road association, road to road association, and

road fusion are developed.

3.2.1 Road Representation

In the proposed approach, roads are represented by piece-wise linear segments. More par-

ticularly, a road is represented by the following straight line in the 2-D space:

y = ax+ b x ∈ [ξs ξe] (11)

where a is the slope, b the y-intercept. ξs and ξe are the x-coordinates of the start and

end points of the road, respectively. The problem of road estimation is to estimate the

parameters, including a, b, ξs, and ξe, based on the radar tracks.

5
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Figure 1: Road network and the first five tracks in SyntheticData.mat. Solid lines: roads;

circles: tracks.

3.2.2 Likelihood of Track Data

Let us assume that a segment of track, which corresponds to the same road, consists of N

data points:

z1:N = [x̂1, ŷ1, · · · , x̂N , ŷN ]
T (12)

= [zT1 , · · · , z
T
N ]

T

where zi , [x̂i, ŷi]
T is the estimate of the x and y coordinates of the target at time i, whose

estimation error covariance is denoted as Σi. Further, the parameters of the estimation

problem are denoted as s = [x1, x2, · · · , xN , a, b]
T . With these notations and assumptions,

the likelihood of z1:N can be derived as

p(z1:N |s) =
N
∏

i=1

1

|2πΣi|
1
2

e−
(zi−µi)

TΣ−1
i

(zi−µi)

2 (13)

where µi = [xi axi + b]T . The corresponding log-likelihood is

log p(z1:N |s) =
N
∑

i=1

−
(zi − µi)

TΣ−1
i (zi − µi)

2
+ c (14)

where c is a constant independent of s.

6
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3.2.3 Maximum Likelihood Estimation of Road

The maximum likelihood estimator (MLE) of s is therefore

ŝ = argmin
s

N
∑

i=1

(zi − µi)
TΣ−1

i (zi − µi) (15)

We derive the MLE of s and summarize it in the following theorem.

Theorem 1 The optimal MLE of s based on position information in radar tracks is a two-

step procedure. First, the estimate of xi, denoted as ξ̂i, should satisfy the following condition

ξ̂i = −
cTΣ−1

i di

cTΣ−1
i c

∀ i (16)

where c = [1 a]T and di = [−x̂i b − ŷi]
T . Plugging (16) back into (15), the MLE of

η = [a b]T is

η̂ = argmin
η

N
∑

i=1

dT
i Σ

−1
i di −

(

cTΣ−1
i di

)2

cTΣ−1
i c

(17)

Proof: First, we re-write the cost function in (15) as

N
∑

i=1

(µi − zi)
TΣ−1

i (µi − zi) =
N
∑

i=1

(cxi + di)
T Σ−1

i (cxi + di)

=
N
∑

i=1

cTΣ−1
i cx2

i + 2cTΣ−1
i dixi + dT

i Σ
−1
i di (18)

where the first equality follows from the identity

µi − zi = [xi − x̂i axi + b− ŷi]
T

= [1 a]Txi + [−x̂i b− ŷi]
T

= cxi + di (19)

Since the ith element in the summation in (18) is only a quadratic function of xi, ξ̂i, the

optimal estimator of xi, must satisfy the following condition

ξ̂i = −
cTΣ−1

i di

cTΣ−1
i c

(20)

Substituting this condition back into (18), we finally have

N
∑

i=1

dT
i Σ

−1
i di −

(

cTΣ−1
i di

)2

cTΣ−1
i c

(21)
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Therefore, the MLE of η is (17), and the MLE of xi is

ξ̂i = −
c(η̂)TΣ−1

i di(η̂)

c(η̂)TΣ−1
i c(η̂)

(22)

Q.E.D.

Note that Theorem 1 simplifies the MLE, an optimization problem, significantly when

N is large. The original MLE problem as defined in (15) involves optimization in a (N +2)-

dimensional search space, whereas the optimization problem in Theorem 1 requires a search

in merely a 2-dimensional space.

We also derive the Cramér-Rao lower bound (CRLB) on the estimation error covariance

matrix for any unbiased estimator of η, which is provided in the following theorem.

Theorem 2 The Fisher information matrix F, which is the inverse of the CRLB matrix,

for estimating η is

F =
N
∑

i=1

Ei −Gi (23)

where

Ei =

[

eTi Σ
−1
i ei eTi Σ

−1
i f

eTi Σ
−1
i f fTΣ−1

i f

]

(24)

Gi =
1

cTΣ−1
i c

[

(

cTΣ−1
i ei

)2 (

cTΣ−1
i ei

) (

cTΣ−1
i f

)

(

cTΣ−1
i ei

) (

cTΣ−1
i f

) (

cTΣ−1
i f

)2

]

(25)

ei = [0 xi]
T , and f = [0 1]T .

Proof: Let us denote L = log p(z1:N |s), then the Fisher information matrix (FIM) J for

estimating s is

J = E{∇sL ∇T
s
L} (26)

Using (14), we have

∂L

∂xi

= −
1

2

N
∑

j=1

∂

∂xi

[

(µj − zj)
TΣ−1

j (µj − zj)
]

= −
1

2

N
∑

j=1

∂

∂xi

{

[xj − x̂j axj + b− ŷj] Σ
−1
j [xj − x̂j axj + b− ŷj]

T
}

= −
1

2

∂

∂xi

{

[xi − x̂i axi + b− ŷi] Σ
−1
i [xi − x̂i axi + b− ŷi]

T
}

= − [1 a] Σ−1
i [xi − x̂i axi + b− ŷi]

T (27)
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Let us define x̃i = xi − x̂i and ỹi = axi + b − ŷi. Then, it is easy to show that [x̃i ỹi]
T has

zero mean and covariance matrix Σi, and (27) can be re-written as

∂L

∂xi

= − [1 a] Σ−1
i [x̃i ỹi]

T = −cT Σ−1
i [x̃i ỹi]

T (28)

Following a very similar procedure, we can prove the following

∂L

∂a
= −

N
∑

i=1

[0 xi] Σ
−1
i [x̃i ỹi]

T = −
N
∑

i=1

eTi Σ
−1
i [x̃i ỹi]

T (29)

and
∂L

∂b
= −

N
∑

i=1

[0 1] Σ−1
i [x̃i ỹi]

T = −fT
N
∑

i=1

Σ−1
i [x̃i ỹi]

T (30)

Now we have

E

{

(

∂L

∂xi

)2
}

= E
{

cT Σ−1
i [x̃i ỹi]

T [x̃i ỹi] Σ
−1
i c

}

= cT Σ−1
i c (31)

Similarly, we can prove that

E

{

∂L

∂xi

∂L

∂xj

}

= 0 ∀ i 6= j (32)

E

{

∂L

∂xi

∂L

∂a

}

= cT Σ−1
i ei (33)

E

{

∂L

∂xi

∂L

∂b

}

= cT Σ−1
i f (34)

E

{

(

∂L

∂a

)2
}

=
N
∑

i=1

eTi Σ−1
i ei (35)

E

{

(

∂L

∂b

)2
}

=
N
∑

i=1

fT Σ−1
i f (36)

and

E

{

∂L

∂a

∂L

∂b

}

=
N
∑

i=1

eTi Σ−1
i f (37)
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In summary, we have

J = E{∇sL ∇T
s
L} (38)

=





















cT Σ−1
1 c 0 · · · 0 cT Σ−1

1 e1 cT Σ−1
1 f

0 cT Σ−1
2 c · · · 0 cT Σ−1

2 e2 cT Σ−1
2 f

...
...

. . .
...

...
...

0 0 · · · cT Σ−1
N c cT Σ−1

N eN cT Σ−1
N f

cT Σ−1
1 e1 cT Σ−1

2 e2 · · · cT Σ−1
N eN

∑N

i=1 e
T
i Σ−1

i ei
∑N

i=1 e
T
i Σ−1

i f

cT Σ−1
1 f cT Σ−1

2 f · · · cT Σ−1
N f

∑N

i=1 e
T
i Σ−1

i f
∑N

i=1 f
T Σ−1

i f





















=

[

A B

BT D

]

where

A =











cT Σ−1
1 c 0 · · · 0

0 cT Σ−1
2 c · · · 0

...
...

. . .

0 0 · · · cT Σ−1
N c











(39)

BT =

[

cT Σ−1
1 e1 cT Σ−1

2 e2 · · · cT Σ−1
N eN

cT Σ−1
1 f cT Σ−1

2 f · · · cT Σ−1
N f

]

(40)

and

D =

[

∑N

i=1 e
T
i Σ−1

i ei
∑N

i=1 e
T
i Σ−1

i f
∑N

i=1 e
T
i Σ−1

i f
∑N

i=1 f
T Σ−1

i f

]

(41)

The CRLB matrix Cc for estimating s is

Cc = J−1 =

[

A B

BT D

]−1

(42)

Using blockwise matrix inversion [13], we know that the lower right 2 × 2 sub-matrix cor-

responding to the estimation of η = [a b]T is
(

D−BTA−1B
)

−1
. As a result, the FIM for

estimating η is simply

F = D−BTA−1B (43)

Plugging (39), (40), and (41) into (43), we can finally prove the theorem. Q.E.D.

From Theorem 2, it is clear that complexity in calculating F is significantly reduced when

N is large. The calculation of F involves the inverse of matrices with smaller dimensions

(2× 2), instead of the inverse of the original (N + 2)× (N + 2) FIM J for s.

3.2.4 Track to Road Association

To test whether or not a track data point z = [x̂ ŷ]T with covariance matrix Σ belongs to a

particular road with parameter estimate η̂ = [â b̂]T and covariance matrix Ση, a Chi-square

test is adopted.
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First, denote ∆1 = ŷ − (âx̂+ b̂). Then, it can be shown that

E[∆1] = 0 (44)

Var[∆1] = gTΣ g + hTΣηh+ Ση(1, 1)× Σ(1, 1) (45)

As a result, the test statistic is set as
∆2

1

Var[∆1]
, which given a Gaussian assumption, follows

a Chi-square distribution with 1 degree of freedom. Hence, if
∆2

1

Var[∆1]
≤ t1, then z belongs to

the road parameterized by η̂, where t1 is a pre-defined threshold which can be determined

by a pre-specified probability of type I error.

3.2.5 Road to Road Association

To test whether or not a road estimate η̂1 with covariance matrix Σ1 can be associated

with another road estimate η̂2 with covariance matrix Σ2, a similar Chi-square test can be

adopted.

First, denote ∆2 = η̂1 − η̂2. Then, it can be shown that

E[∆2] = 0 (46)

Cov[∆2] = Σ1 + Σ2 (47)

As a result, the test statistic is set as ∆T
2 (Σ1 + Σ2)

−1∆2, which given a Gaussian as-

sumption, follows a Chi-square distribution with 2 degrees of freedom. Hence, if ∆T
2 (Σ1 +

Σ2)
−1∆2 ≤ t2, then these two road estimates can be taken as to correspond to the same

road. t2 is a pre-defined threshold which can be determined by a pre-specified probability of

type I error.

3.2.6 Road Fusion

If a road estimate η̂1 with covariance matrix Σ1 can be associated with another road estimate

η̂2 with covariance matrix Σ2, they should be fused to get a more accurate road estimate.

The fused road estimate is

η̂ = Σ2(Σ1 + Σ2)
−1
η̂1 + Σ1(Σ1 + Σ2)

−1
η̂2 (48)

and the corresponding covariance matrix of the fused estimate is

Σ = Σ2(Σ1 + Σ2)
−1Σ1 (49)

3.3 Road Conflation Based on Both Radar Positional and Velocity Data

In Section 3.2, only position estimates in the radar tracks were used for road network es-

timation. The velocity estimates, which also contain valuable information about the roads

(especially that about the directions of the roads), were not employed. In this section, a

road estimation approach is developed to incorporate both position and velocity information

in the radar track data. The maximum likelihood estimator (MLE) of a road based on radar

tracks and its corresponding Cramér-Rao lower bound matrix are derived.
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3.3.1 Likelihood of Track Data

As in Section 3.2, roads are represented by piece-wise linear segments, which are modeled by

straight lines in the 2-D space with slope a and y-intercept b. It is reasonable to assume that

the target moves towards the same direction as that defined by the current road segment,

except when it makes turns at road intersections. Hence, we have

vy = avx (50)

where vx and vy are the target velocities along the x and y axes, respectively.

Let us assume that a segment of track, which corresponds to the same road, consists of

N data points:

z1:N = [x̂1, ŷ1, v̂x1 , v̂y1 , · · · , x̂N , ŷN , v̂xN
, v̂yN ]

T (51)

= [zT1 , · · · , z
T
N ]

T

where zi , [x̂i, ŷi, v̂xi
, v̂yi ]

T is the state estimate of the target at time i, which consists of the

estimates of the target position and velocity along x and y axes, respectively. The estimation

error covariance matrix is denoted as Σi. Further, the parameters of the estimation problem

are denoted as s = [x1, vx1 , x2, vx2 , · · · , xN , vxN
, a, b]T . With these notations and

assumptions, the likelihood of z1:N can be derived as

p(z1:N |s) =
N
∏

i=1

1

|2πΣi|
1
2

e−
(zi−µi)

TΣ−1
i

(zi−µi)

2 (52)

where µi = [xi, axi + b, vxi
, avxi

]T . The corresponding log-likelihood is

log p(z1:N |s) =
N
∑

i=1

−
(zi − µi)

TΣ−1
i (zi − µi)

2
+ c (53)

where c is a constant independent of s.

3.3.2 Maximum Likelihood Estimation of Road

The Maximum Likelihood Estimation (MLE) of s is therefore

ŝ = argmin
s

N
∑

i=1

(zi − µi)
TΣ−1

i (zi − µi) (54)

Analogous to Theorem 1, we derive a simplified version of the MLE as summarized in

the following theorem.

Theorem 3 The optimal MLE is a two-step procedure. For 1 ≤ i ≤ N , let us denote

xi = [xi, vxi
]T . The estimate of xi, denoted as x̂i, should stratify the following condition,

x̂i = −
(

CTΣ−1
i C

)

−1
CTΣ−1

i mi ∀i (55)
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where

C =











1 0

a 0

0 1

0 a











and

mi = [−x̂i, b− ŷi, −v̂xi
, −v̂yi ]

T .

Plugging (55) back into (54), the MLE of η = [a, b]T is

η̂ = argmin
η

N
∑

i=1

[

mT
i Σ

−1
i mi −mT

i Σ
−1
i C

(

CTΣ−1
i C

)

−1
CTΣ−1

i mi

]

(56)

The proof of Theorem 3 is similar to that of Theorem 1, and is skipped here for brevity.

Again, Theorem 3 simplifies the MLE problem significantly when N is large. The original

MLE problem as defined in (54) involves optimization in a (2N+2)-dimensional search space,

whereas the optimization problem in Theorem 3 requires a search in merely a 2-dimensional

space.

The Fisher matrix F for estimating s is

Fs =















∆1 0 · · · 0 ∆1,η

0 ∆2 · · · 0 ∆2,η

...
...

. . .
...

...

0 0 · · · ∆N ∆N,η

∆T
1,η ∆T

2,η · · · ∆T
N,η ∆η















(57)

where

∆i = CTΣ−1
i C (58)

∆i,η = CTΣ−1
i Di (59)

∆η =
N
∑

i−1

DT
i Σ

−1
i Di (60)

are 2× 2 sub-matrices, and

Di =











0 0

xi 1

0 0

vxi
0











(61)

The CRLB matrix for estimating η = [a, b]T can be obtained by first taking the inverse

of the (2N+2)×(2N+2) Fs matrix, and then taking the lower-right 2×2 sub-matrix of F−1
s
.

However, this is not a very efficient approach especially when N is large and the inversion of

a large Fs is involved. As we did in the proof of Theorem 2, taking advantage of the special

structure of Fs, and using blockwise matrix inversion [13], a much more efficient approach to

calculate the Fisher information matrix Fη is derived and provided in the following theorem.
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Theorem 4 The Fisher information matrix for estimating η based on both position and

velocity information in radar tracks is

Fη =
N
∑

i=1

[

DT
i Σ

−1
i Di −DT

i Σ
−1
i C(CTΣ−1

i C)−1CTΣ−1
i Di

]

(62)

It is clear that the calculation of Fη only involves manipulation of matrices with smaller

dimensions (such as 2×2, 4×2, 2×4, and 4×4.), instead of the original (2N+2)× (2N+2)

matrix. Now, the CRLB matrix for estimating η can be readily obtained by taking the

inverse of Fη.

3.3.3 Track to Road Association Using both Position and Velocity Data

To associate a track data point z = [x̂ ŷ v̂x v̂y]
T with covariance matrix Σ to a road with

parameter estimate η̂ = [â b̂]T and covariance matrix Ση, a Chi-square test is adopted.

Assuming that z belongs to the road, we denote ∆2 = [ŷ− (âx̂+ b̂) v̂y − âv̂x]
T . Then, it can

be shown that

E[∆2] = 0 (63)

where 0 is a all-zero vector. The covariance matrix of ∆2 is

Σ∆ = E{∆2∆
T
2 } (64)

=

[

fTΣf + gTΣηg +Σ(1, 1)Ση(1, 1) fTΣh+ gTΣηk+Σ(1, 3)Ση(1, 1)

fTΣh+ gTΣηk+Σ(1, 3)Ση(1, 1) hTΣh+ kTΣηk+Σ(3, 3)Ση(1, 1)

]

in which

f = [−â 1 0 0]T , h = [0 0 − â 1]T , g = [−x̂ − 1]T , k = [−v̂x 0]T . (65)

The test statistic, t = ∆T
2Σ

−1
∆ ∆2, follows a Chi-square distribution with 2 degrees of

freedom. If t ≤ t2, then z belongs to the road parameterized by η̂, where t2 is a pre-defined

threshold corresponding to a pre-specified probability of type I error.

3.4 Overview of the Road Extraction Algorithm

Here we provide an overview of the road extract algorithm. Radar tracks are used as building

blocks to generate road estimates. This is an iterative algorithm where a single radar trajec-

tory is processed at each iteration. During each iteration, new road estimates will be either

fused with exiting road estimates or added as new road. As more tracks are integrated into

an initially empty map, the accuracy and richness of the map improve. A post processing

algorithm can be applied to merge fragmented roads and prune isolated false roads. The

overview of the algorithm is illustrated in Figure 2.
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Figure 2: Road map extraction based on radar tracks.

4 RESULTS AND DISCUSSION

4.1 Numerical Examples based on Position Data Only

Based on the theoretical results derived in Section 3.2, we develop data structure for road

representation, and Matlab codes for road estimation based on simulated radar tracks, track

to road association, road to road association, and road fusion.

In Figure 3, a road estimation/extraction example is shown. The extracted roads are

based on the first ten radar tracks. As shown in the figure, most of the time, the estimated

roads are reasonably accurate and close to the underlying true road networks. However, for

short road segments, the estimates sometimes are not very accurate. This is especially clear

for part for the polygon circle in the lower-left corner of the figure.

In Figure 4, the road estimates based on all the radar tracks are presented. As shown in

the figure, the estimated roads are most concentrated around the true roads. But there are

a lot of fragmented roads and some false roads. To alleviate this problem, a post processing

algorithm is applied to merge fragmented road estimates and eliminate isolated false road

estimates. Road estimates after post processing (merging and pruning) are shown in Figure

5. It is clear that even after the post processing, the road estimates are still not ideal, and

there still exist fragmented road estimates and false road estimates.

4.2 Numerical Examples Based on Both Position and Velocity Data

In Figure 6, a road estimation/extraction example is shown based on the first ten radar

tracks, where both position and velocity information is used. As shown in the figure, most

of the time, the estimated roads are reasonably accurate and close to the underlying true

road networks. However, compared to Figure 3, there is an extra false road.

In Figure 7, the road estimates based on all the radar tracks are presented. As shown

in the figure, the estimated roads are most concentrated around the true roads. But there

15
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Figure 3: Estimated roads based on the first ten radar tracks. Blue solid lines: true roads;

red dash-dot lines+circles: estimated roads.
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Figure 4: Estimated roads based on all radar tracks. Blue solid lines: true roads; red

dash-dot lines+circles: estimated roads.
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Figure 5: Estimated roads after pruning isolated road estimates. Blue solid lines: true roads;

red dash-dot lines+circles: estimated roads.
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Figure 6: Estimated roads based on the first ten radar tracks. Blue solid lines: true roads;

red dash-dot lines+circles: estimated roads.
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Figure 7: Estimated roads based on all radar tracks. Blue solid lines: true roads; red

dash-dot lines+circles: estimated roads.

are a lot of fragmented roads and some false roads. To alleviate this problem, again a post

processing algorithm is applied to merge fragmented road estimates and eliminate isolated

false road estimates. Road estimates after post processing (merging and pruning) are shown

in Figure 8. It is clear that even after the post processing, the road estimates are still not

ideal, and there still exist fragmented road estimates and false road estimates. However,

comparing Figure 5 and Figure 8, the estimation performance improvement achieved by

using both position and velocity information is very clear.

4.3 Initialization using velocity data

From the experiments, it is found that the initialization of road estimate is very important

and has direct impacts on the road estimation performance. So far in the initialization pro-

cess, only radar track’s position information has been used to estimate the road parameters

a and b. Since the radar track’s velocity data contain the road direction information, in-

corporation of this information has the potential to improve the road initialization, and to

improve the following road estimation process. The following modification has been made

to include the velocity information. Let us define the target’s heading at time i as

αi = atan2(v̂yi , v̂xi
)

where v̂xi
and v̂yi are the target’s velocity estimates along x and y axes at time i respectively.

Two consecutive radar track data points at time i and i + 1 are used to initialize a road
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Figure 8: Estimated roads after pruning isolated road estimates. Blue solid lines: true roads;

red dash-dot lines+circles: estimated roads.

estimate only if the two directions αi and αi+1 are very close to each other. Mathematically,

the condition is |αi − αi+1| < η, or |αi + π − αi+1| < η, or |αi − π − αi+1| < η, where η is a

pre-specified threshold.

In this experiment, we set η as 5◦. In Figures 9 and 10, the road estimates which are

initialized without velocity information and those initialized with the velocity information

are compared. It is clear that the latter provides us better road estimation solutions with

less false roads.

4.4 Road Consistence Test

To further reduce the false road estimates, a road estimate consistence test is proposed. Once

a new road estimate is generated, all the track data, which have been used to generate the

road estimate, are subject to a track to road association procedure, as discussed in Section

3.3.3. If all the track data points passed the test, meaning that they are associated to the

new road estimate, then the new road estimate is accepted and used to update the global

road estimates; otherwise, the new road estimate does not have a good “match” with the

track data and it is discarded. In this way, the possible false road estimates are removed

from the road database.

In Figures 11 and 12, the algorithm involving road consistence tests is compared against

that without the consistence test. It is clear that the former has much better performance

with more consistent road estimates.
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Figure 9: Estimated roads using the first 20 radar tracks. Roads are initialized without

velocity data. Blue solid lines: true roads; red dash-dot lines+circles: estimated roads.
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Figure 10: Estimated roads using the first 20 radar tracks. Roads are initialized with velocity

data. Blue solid lines: true roads; red dash-dot lines+circles: estimated roads.
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Figure 11: Estimated roads using the first 100 radar tracks without road consistence tests.

A roads are initialized without velocity data. Blue solid lines: true roads; red dash-dot

lines+circles: estimated roads.
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Figure 12: Estimated roads using the first 100 radar tracks with road consistence tests. Blue

solid lines: true roads; red dash-dot lines+circles: estimated roads.
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4.5 Road Merging

As we can see in Fig. 12, the road estimates are fragmented, with many small road segments,

some of which really belong to single roads. To combine the fragmented road estimates that

belong to the same road, Matlab codes have been developed for a road merging algorithm.

The algorithm works as follows.

The input of the algorithm is the road estimates based on the radar data, and the output

is the merged road estimates. Two sets of road estimates are maintained. The first set

contains the merged road estimates, which is empty initially. The second set includes the

unprocessed road estimates. At each iteration, one unprocessed road estimate from the

second set is compared with the road estimates in the first set. If it can be associated

with a merged road estimate from the first set, using a threshold t21 as discussed in Section

3.2.5, then the unprocessed road estimate will be fused with the corresponding merged road

estimate, as described in Section 3.2.6, and it will be deleted from the second set. If it can

not be associated with any road in the first set, then road to road association tests will

be performed to see if it can be associated with any road in the second set using another

threshold t22 . If the unprocessed road is associated to another unprocessed roads, these two

roads will be fused, the fused road will be added to the first set, and both of the original

roads will be deleted from the second set. If the unprocessed road can not be associated

with any road in both sets, then it will be added in the first set as a new merged road and

deleted from the second set as an unprocessed road.

Based on the first 1000 radar tracks, 258 road estimates have been generated and plotted

in Fig. 13. The road merging algorithm has been applied to the 258 road estimates, and the
output, the merged roads, really depends on the thresholds t21 and t22 used in the algorithm.
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Figure 13: Estimated roads using the first 1000 radar tracks with road consistence tests.

Blue solid lines: true roads; red dash-dot lines+circles: estimated roads.
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In Table 1, the number of merged road estimates is listed as a function of the thresholds.

Based on the numerical results, it is clear that the threshold t21 and t22 play a crucial role

in road merging performance. A larger threshold means that it is easier to associate a road

to another road, and hence it results in a smaller number of merged road estimates.

Table 1: Number of merged roads (Nm) based on 258 unprocessed road estimates

t21 = t22 13.82 23.03 32.24 41.45 50.66 59.87 69.14

Nm 206 173 142 132 121 116 110

When t21 = t22 = 69.14 are used, a total of 110 merged roads have been obtained and

plotted in Fig. 14. Compared to Fig. 13, in this figure, there is less number of road estimates

due to the road merging procedure.

4.6 Evaluation of Road Estimation Accuracy

In this subsection, we evaluate the road estimation accuracy of the proposed algorithm with

different amount of radar track data. In this example, the 22nd road as shown in Figure 15 is

chosen to illustrate the estimation accuracy. We define the absolute estimation error in road

parameters a and b as |a− â| and |b− b̂|, respectively, and compare them with the theoretical
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Figure 14: Merged road estimates. Blue solid lines: true roads; red dash-dot lines+circles:

estimated roads.
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CRLB on the standard deviations (s.d.s) of the estimation errors for a and b. The results

based on different number of radar tracks are provided in Table 2. From this table, it is

clear that as more radar track data are fused to estimate the road, the road estimation error

decreases, and estimation accuracy improves significantly. Further, the calculated CRLB is

comparable to the actual estimation error, and it indeed provides a very useful estimation

performance measure.

Table 2: Road estimation errors

Number of radar tracks 10 20 50 100

|a− â| 0.028 0.0011 0.0034 0.0026

CRLB on s.d. in â 0.01 0.0041 0.003 0.003

|b− b̂| 48.91 6.86 3.14 3.04

CRLB on s.d. in b̂ 18.7 7.06 5.87 5.86

5 CONCLUSION

In this project, we proposed a framework to generate accurate road network map based

on radar tracks of ground targets. An ML road estimator has been developed to estimate

roads using radar tracks, and the corresponding CRLB matrix was derived as well. Track to
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Figure 15: The 22nd road, denoted by diamonds.
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road correlation/association approaches have been proposed to associate track segments to

existing road segments. To enhance the association performance, statistics and information

extracted from the track estimate, including both position and velocity estimates, have been

used. For tracks overlapping with any existing roads, a track to road fusion algorithm was

proposed to fuse the track with the associated road segments to improve the road map

accuracy. Some numerical examples have been provided to demonstrate the effectiveness of

the proposed approaches.
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List of Acronyms

CRLB Cramer-Rao Lower Bound

DTW Dynamical Time Warping

GMTI Ground Moving Target Indicator

ML Maximum Likelihood

MLE Maximum Likelihood Estimator

NIMA National Imagery and Mapping Agency

SAR Synthetic Aperture Radar

STAP Space-Time Adaptive Processing

USGS United States Geological Survey
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